By T. Brench, B.Sc.(Hons.), AM.I.C.E., L.S.E.

1. The object. 5

The object of this paper is to find, by using Hamilton's 1|
Punc:ple the Energy Relations behind authontatwe flow formulae !
and thereby establish a new flow formula fo ™ rough” conditions
of rigtd channels and pipes. Incidentally a further meaning is given
to certain quantities whose exact nature is not known. A

2. Introduction.

To prevent the analysis SEEmlng indirect and involved it 18
advisable to show first how by using clues from its development and
results existing information can be corrected and corelated.

(i) Old Flow Formufae. The Chezy EquahnnV— C+v/RS has
always been, and stll is the basis of flow formulae investigation.
Before our presen: knowledge of boundary layers there seems to
have been no appreciation of the apparent difference between
smooth boundary and rough boundary turbulence, excent hy
phvsicists, and the result was * universal ' formulae of the Kutter
type for C, which are distinguished by dimensional heterogeneity
that renders them of little use as dynamical pointers. Bazin's
¢ formula 1s an improvement in that 1t can be rendered dimen-

sionally homogeneous by giving his y the dlmensmns of L% but
it is not suggestive. Mannings’ fﬂrmula however, is most suggestive
and its simplicity suggests that it is based on one st ol daln
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 where R is hydraulic mean depth and S is surface slope for a channel
. and non-dimensional pressure gradient for a pipe.

Smooth boundary turbulence gave the formula
V=const. R? Sk...... k)
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74 Energy Theory of Turbulent Flow of Liguids.

to Woltmann (1804) and Flamant (1892) (Bib. 1, page 41) and was merely
dimensionally corrected by Blasius (1911) to
SR S
V=absolute const. (N)® 4/gRS......(3)
where N is Reynold’s Number. :

(i) The Influence of Reynolds was to bring the physicists

investigations on to dimensional lines; but it did not affect engineers’
formulae noticeably. :

(iti) More modern investigation has been on velocity distribution
associated with the names of Prandtl, Nikuradse, von Karman, Stanton
and others. [t has produced nothing final in the way of flow formulae,
but has given a wealth of valuable information and ideas. The
more Important, for this paper,, are :—

(a) Relative Roughness. Writing conventionally,

PN B BSIA oo voniniin (4)

Blasius (1911) (Bib. 1. page 44) pointed out that A, when the formula
applied to rough flow, must depend, not merely on the boundary pro-
tuberance size, [, but on /R, the * relative roughness”. "

(b) Boundary Layer. Instead of there being slip at the
boundary there is a layer of small thickness 6, in which viscosity has a

for 1

(5)
COi
fre

10

preponderating effect. The order of the relative boundary layer thick-
ness 8/R 1s that of 4/]/N, and in this layer the boundary velocity
drpps rapidly to zero. : : :

(c) Rough and Smooth Boundaries. These terms. are now
understood to be relative to the flow. When & is sufficiently great to
mask the boundary protuberances of height! the boundary is
smooth and the flow formula contains viscosity, but not [. When &
15, or would be, much less than [, then the protuberances break the
layer, and the boundary is rough. The flow formula then contains [
but not ». This is the commonest case in engineering. Between
the two stages is a transition not susceptible to exact analysis, this
stage being the one which confuses purely empirical work.

(d) Mixing Velocity, V.. This (Bib.2) appears to be due to
Prandtl recently, although the ultimate 1dea must go back to at least the
Kinetic Theory of Gases. He imagines the frictional resistance of the
fluid to arise from transference of momentum between layers. by the
passage of particles. The velocity of transference is of the ~order of

[+

V‘*:'Vf }Q »

the : shear stress velocity”’; but this article will use the more elegant
term” Mixing Velocity” as 1t 1s not required 1n any other connection.

where T is the boundary shear stress,. He calls Vs

-
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(iv) Prandil's Flow Ec;uaf:'aﬁ;. T-l;e account of these is in Bl]:i 2'_,
and they are associated with several men’s work. They are

_ V=1/8¢RS (20 logiy 2R/1 +1'74)........(5)
for rough flow, and (4) for smooth flow with

'{ i
i =2losu NVE=08.....0)

These equations are said (Bib. 2) to fit Nikuradse's experiments.
(5) is tested in Bib. 2, Fig. 9 against Nikuradse's data for artificially sand-
coated circular pipes of 275, 5 and 10 em. diameter with 2R/l varying
from 15 to 252—the whole range being up to 507. (6) is stated

to be fitted 1mperfectly.

These formulae are based on the sound, but not very explicit
idea of mixing velocity, and on certain plausible assumptions, and
devised to fit the fact that a logarithmic curve fits both the boundary
layer (whose exact shape is doubtful), and the inner fluid velocity dis-
tributions with considerable accuracy. The more obvious defects of
the underlying theory are that it gives the velocity distribution curve
a cusp on the pipe centre line, and the derived constants have to be

altered slightly to fit facts.

(5), by virtue of its derivation, is of dynamically sound form
a good fit to data and it contains relative roughness explicitly.

(v) Manning's Furn?ufa Dimensionally. (5) suggests dimensional
analysis of (1), resulting mn :—

il by TR TR st (1)

which shows that Manning’s formula is for 'rough flow, and
contains all the physical implications of Prandtl’s.

N s :

Fig. 2 compares (R/I)* with' 1[4/ & of (5) over the range of Bib. 2.

Fig. (9) and over the whole range of Nik};radse s experiments and it
will be seen that there is practically no difference in the formulae as

a fit to data.

oty BESE: corsmmsnsin )

or V=absolute const. (R/)} +/gRS.......... 7
Fig. 1 shows the most suitable data from Barnes’ * Hydraulic Flow
Reviewed” testing the formula, and Fig. 1 (a) shows the range of R and
S covered, illustrating incidentally, the practical difficulty of obtaining
a wide variation of R without having to change the roughness.
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Manning’s or Prandtl’s formula would also fg the data excellently. Fig. 3
shows (7') compared with (5) in the manner of Fig. 2. The- formula
stands the test.

(vii) Author’s Formula adapted for Smooth Flow. Assuming
(7') correct it is reasonable to expect that, for smooth flow, R/I

would be replaced by R/8, 1e., by v/ N, making the smooth flow
formula

i
I/=absolute constant. N8 voRS.......... (8)

But this is precisely Blasius’ Formula (3) for smooth pipes, so the formula
(7) receives strong confirmation, while Manning’s formula- appears as
a very close approximation to truth ; and the flow formulae for smooth
and rough boundaries, apparently so different, are both derived from

the same fundamental law.

(piii). Incoherent Boundaries, The Lacey Theory. - Channels
such as canals in alluvial plains, and rivers in spate with the bed
material active form a special class. They are characterized by the fact
that they form their own section, shape and slope in their own inco-
herent transported material. A rigid channel can only. adjust its
R; arigid pipe its S; but a Regime Channel adjusts its R, S and
PR, P being wetted perimeter. These terms are all uniquely deter-
minable as functions of the discharee @ and the Lacey Silt Factor f.
The whole theory is detailed in the Institution of Civil Engineers’ Papers

4736 and 4893.

(a). Asmight be expected the Lacey Formulae contain-a standard

type flow equation :—

V=const. RE S:......... )
R
—abs. const. (7 i e . ©)
Py

in exact‘cnrrcsp_mndr:{lce with (7) and (7') but the ™ equivalent protu-
berance” contains viscosity in the term

P o) een it oasnl D)
(9) corresponds to the adjus.table R.

Corresponding to the adjustability of S, another equation,
Vo= TGRS, ovv i <11 :
ar PGPV RS asinuiaaflly | -

holds.
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Correspﬂnaing to the adjustability of P/R the eq;.tatimn
PIR= 12V compenss e 4 ¥

hoId§. C an_d C' are hoth non-dimensional, but may contain silt
relative density.

Combination of (9) and (I1) eives

fi being a proportional to the Lacey Silt Factor f, and
ol m’\/’g',_ﬁfjgf'r{VL F’), d being mean silt particle diﬂameter and m the

mass of silt per second per cusec, or a function of it.

(3) V% R=f11s referred to by Lacey as a ** turbulence criterion”,
Tt will be found that it comes into all energy expressions in the author's
theory. It is the Lacey Theory which, by finding that /i defines “silt
load,” has brought it into prominence as a new cencept in general fur-
bulence theory.

1 . wite
() V,=(vg)s is a further new concept arising from the

Lacey Theory. It has a definite correspondence with V., and appears
to be a mixing velocity related to the sand-water layer.

(d) The existence of a second flow formula (11} obviously
indicates the dual nature of the boundary laver (the same idea occurs
in Bib. I, page 78 for clean water). The ordinary boundary layer is
modified by the presence of the active incoherent bed material.

Prandtl has done for pipes what Lacey has done for Regime
Channels. Both have approached their subject with a dynamical out-
look. Prandtl has, however, worked from velocity distribution, and
owes much to others. Lacey has worked from flow data, and his data
is colossal in range and quantity, so his results have an authority denied
to empirical rigid channel formulae, whether that empiricism bhe of
directly determming flow formulae, or of fitting curves to velocity dis-
tribution data, and deriving the flow formulae.

The Lacey formulae have been acccpted b}r the Central Board
of Irrigation of the Government of India for design.

(ix). Correlation of information. The practical use for several
years, and theoretical consideration of the Lacey Theory, particularly
the implication of Lacey’s dimensional ideas and his V*/R, suggested
the energy line of iInvestigation to the writer. This preduced his
formula (7) which, along with the idea of relative roughness and
Prandtl's formula suggested the mean of writing the flow formulae
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for all cases, 1.e., (1), (7) and (9) in their dimensionally correct form,
and correcting (1) to (7). This, and analysis, suggested that the
smooth boundary formula (2) must be of the same form, viz., (3) where

v/ N is given its proper meaning.

Prandtl’s mixing velocity idea suggested linking V;ﬁ with it

The complete linkage of results previously considered unconnected
should assist the study of the mechanism of turbulence.

(x). The Mechanism of Turbulence is illustrated in the dirty water
of irrigation canals. The surface is observed to be continually broken by
rosettes of fine silt at short space intervals. This indicates that momen-
tum transference 1s effected by vortex rings formed at the bed, and
rising to the surface. This phenomenon adds  definiteness to Prandil’s
idea of mixing velocity, referring it not to particles (which would
appear legitimate only in gases) but to eddies. :

3. Hamilton's Principle.

Consider the system of particles which constitute the discharge
Q of a pipe or channel. Were there no internal friction the particles
would adjust themselves to such a configuration that & (L— V)=0,
where L is the K. E. and V the Potential Energy. The effect of internal
friction is exactly to balance 7, and the condition becomes & =0,
i.e., the K. E. of flow must be a minimum.

Now the velocity at any point in the fluid is the mean velocity
plus a small deviation which averages zero; so the K. E. per Ib. at the
point is the K. E. of the mean motion, -plus ‘he K. E. of the relative
motion, and if the deviation of velocity is considered as random the
principle of least squares shows that the K. E. of the relative motion

must be a minimum.

Summing throughout the sys'em comprising @Q, and ‘knowing
that the K. E. is a minimum, and so is the K. E. of the relative motion,
it follows that the K. E. of the mean motion must b= a minimum, i.e,
QV must be a minimum. But as we consider fixed discharge @ it
follows that, . ' - '

V' must be a minimum...... S (14)

Strictly ¥ is root mean square velocity which, in practical cases
does not differ appreciably from the mean velocity V.

: The condition (14) means, for a rigid channel (whic.h. can only
adjust R) that JV‘HRZU;_ for a ri'gid-pilj-; dV|dS=0 ; and for a Lacey
Regime Channel dV/dR=0=dV[dS. - ~. . - .00




: E:_riﬂrgy Theory of Turbulent Flow of Liquids, 79

i. The Energy Dissipation Equation.

Using the old idea of boundary slip the equation for the
fluid contained between two cross-sections unit distance apart will be
“ Rate at which Gravity works equals Rate of working of Boundary
Resistance plus Internal Rate of Dissipation of Energy ".

The modification to fit modern ideas is verbal, viz. * Rate at
which gravity works equals Rate of Transformation of Energy at the
Boundary Layer, plus Rate of Dissipation within the fluid.” And for
“ Boundary Resistance is quadratic in ¥}, " we say” Rate of energy

transformation is cubic in ¥ ",

Our problem is to give symbolic expression to the energy equa-
tion so that, on treatment by the Minimum Velocity Condition, known,
or probable, flow equations result.

(1) Rigid Rough Pipe. Consider a pipe of smooth cross-sectional
shape, so that the perimetral velocity ¥} shall bc constant. (This
excludes rectangular pipes, which are unsuitable for experimental
determination of the laws of flow). ¥} is the “slip velocity” of older

theory or to fit boundary layer theory, it is very nearly the velocity at
the baundary found b}r cxtrapolating from the velc-c:t}' distribution
curve of the inner fluid before it comes under the effect of the

boundary layer.

All experiments suggest that the resistance is quadratic in V.

The idea of relative roughness suggests-that it must vary inversely as
some power of R. Now consider two pipes of different R, but the same
absolute roughness. The larger will have a relatively less protuberance
height, but relatively more protuberances per unit area of boundary.
Therefore the power of R is unlikely to be the first, and is very probably
3. This brings the boundary resistance per unit area to the form

2 1
@V, /R?. As it must depend on the fluid density £ and protuber-
ance height I, dimensional considerations show that it must further reduce

1
to absolute constant P (I/R)* V% Viscosity cannot enter.

The boundary resistance equation for rough flow is therefore

PsPRS—BPV, /R (15)
—abs. const. PAUIR)YV, 15y
giving Vy—(Pg/®)RE S (16)

= abs. const. (Rﬂ}.'}gRS (Iﬁf]
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Cansidcring; unit length “the Rate of Bm-mdar}- Wﬁ?{;
®PV2, R¥ which, writing Q/VR for P, and simplifying, reduces to

3
Rate of Boundary Work:Q'iﬁ{,Pg@)%R%SﬂfV. K

The rate of internal working must be, at present, conjectural,
[t must vary as @ and as some power of V. It must further depend
in some way on how velocity or turbulence is distributed, 1. e., on some
average velocity gradient such as V/R or on the Lacey turbulence crite-
nion V' R. Finally it will depend on some or all the properties of the
flurd and boundary, denoted by k. (We need not anticipate that £ will
not contain wviscosity). In fact, whatever view we take, it should be
possible to write,

Rate of Internal Work=kQV"/R" (18)
The rate of Gravity Work is PgQS (19)
Equate (19) to (17) plus (18) and divide by PgQ, getting
S=(Pel®) RIS IV +ipg V" IR 20)

which represents the Energy Dissipation Equation.

Multiplying both sides by gV will give rate of working per
Ib. of fluid.

Applying the condition dV/dS=0(rigid pipe) to (20) we find
th]-:l} i:hr: doubtful second term on the right does not affect the answer
which is

V=3/2pg/P) RES® @
—3/2RIc)*VgRS ar)

using the value of @ found dimensionally for (15°). The term c is
introduced so that the constant 3/2 can be retained whether we take
protuberance height relative to R, or r, or any other linear dimension
of the pipe.

(21") with (15") gives
v, =23V @)

(@) This Boundary Velocity Ratio is confirmed from
Figs. 25, 28 and 3I(II) of Bib. | (Prandtl) by drawing tangents
from V,/V=% to the velocity distribution curves, remembermg
that although the curves bend rapidly near the boundary the
boundary layer is confined, in its full effect, to about 1/100th of the
I‘adiu:, -

he ¢
pre

st“?
Tt
thi

Pi

ol

- e




L

Energy Theory of Turbulent Flow of Liquids. 81

(b)) The Ffaw Equation were it not {ur further mfarmatmn rmght

be considered as derived from a L/R M ecistance law. Repetition of the
preceding analysis would then show that the Boundary Velocity Ratio is

still 2; but the index 1 in the Flow Equation would be replaced by 2—:

} T only likely value of r besides the 2 chosen by the writer is 3, and

this would give Manning’s Equation.

(ii) Rigsid Rough Channels. Channels must obey the
Pipe Law. For, if they did not, imagine a circular conduit
running exactly half full By symmetry we should expect it to
nbﬂ'y the same law when just ﬂxacﬂjr full. This latter condi-
tion, however, is the limiting case nf pipe flow, so we should
expect the Pipe and Channel Laws to give the same result for this condi-
tion. This coincidence must apply no matter what the R and S, so
can only occur if the laws are identical.

We may, therefore, find m, n and £ of (20) by applying the condi-
tion dV/dR=0, and arranging m, n and k to give (21).

A simpler method is to insert the value of S from (21) in the
first member of the nght hand side of (20) which will reduce it to
()S making the second member (3)S. Use the value of 1/S from (21)
getting the 1dent1t},

kipoV" R =4V 3(@pg) (1R
which can only be satisfied if m=2, n=3/2, k=4®/27.

(ii}) Rough Channels and Pipes then, have the same flow
equation, and the same Boundary Velocity Ratio 2: 3, divide their
Boundary and Inner Rates of Working in the ratio 2: 1 and have the
same energy dissipation equation

S—(pg/®): R 5%V +4/2(®pg) V*IR? @)
— (RIS RESS |V + 4127 R (V2/gR) 23)

The rate of mternal working per pound 1is
427 (IR? (VHRV 24)

This, combined with Sec. 2 (x) suggests that Lacey's turbulence
criterion ¥'#/R measures the mean internal resistance per Ib. of fluid
to the upward moving eddics, that V' measures their mean speed, and
that ¢l/R 1s the n:ducmg factor that brings the measure V to its
final value,

‘ (i) Lacey's Turbulence Criterion is thus a vital link between
incoherent and rigid boundary theories.
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(v) Prandil’s Ve
Ve = o= ar (@prZ)

— 23 VCR® oo
For a 24" pipe of concrete with projections of say 0'(04"

V=3 feet [ sec and c= % (i. e. relating protuberance to radlus)

= 5 It ,"rser:

This supports the view that Vs measures eddy speed. Using (25) in
(24) we find, _

Rate of internal work per Ib. = ¥V, 3 R) V. : (24"
=3V:¥IR) Va (RID, o)
As we know that V. is at right angles to the flow this confirms

the view on the meaning of V*/R, and suggests how the 1dea of V,
might be improved to explain the mechanism of turbulence.

(vi) Smooth Pipes and Channels. = As explamed mn 2 ()
Boundary Layer Theory immediately suggests that the smooth plpt.
analysis differs from the rough merely in that Riﬁocy/N replaces R

thrﬂug hout.

The resistance law will be

Resistance = abs. const. PpVi/(VR/[v) : : = (Y
and, repeating the energy analysis, it will be found that
V=111V | e
;abs const. | N%‘\/ RS @M
Rate of working per lb. internally _
=abs. const. (UN}E {WIR} V wi® I
V23, V (1IN - v 50

Smouth Pipe and Channel Theory is, thus, derivable from the same
energy law as for rough {:ondltmns and the internal . turbulence mecha-

nism 18 the same.
(viii) Lacey Channels. '
(@) Write Laceys’ flow formula {9) as

V=15 (34;1 V“)x/gRS R (26)
25" 4 o o B 3 _-
=[5 (Rfc:)*«/gRs S e e b B (200 1
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Th_:s_ relates it exactly to the ;ugh flow rigid channel formula, an;;
s now equivalent protuberance.”

The value of f given in 2.(viii), viz., f1°C m+/zd. g/(Vyp')is

obtained by dimensional analysis from Lacey’s result that fiocd}. It
may, therefore, be subject to slight improvement. This does not affect his

flow equations in which fi is V?/R. In fact the _{10‘3 t.{% relation is an
attempt to link the Lacey Theory with the physical properties of the
boundary layer and fluid, and is extraneous to the self-contained theory

linking ¥ with R and S.

To proceed, it is obvious that (26) must be derivable from exact-
ly the same form of energy equation as for rigid channels, and the same
form of resistance law, viz., an impact one. It must, therefore, be
derived by taking as boundary the bottom of the active incoherent layer
where the sand will be stationary. The impact will, however, be, not
L from clean water, but from a sand-water mixture. The nature of the
impact will depend on the proportion of sand to water, and how that
" sand is distributed in the sand-water layer, ie., it will almost certainly

depend on viscosity. Further, the fact that the sand and water are
of different densities may be expected to bring g into the formula.

Writing £¢ (£,V *¢°C?) < (m Ved V Ip'sC?) (27)

it is seen that the factors to be reasonably expected do occur. » must
be related to both water and sand density ; but in a practical formula

e P will suffice.

(). The Regime Test Formula (11°) rewritten as equation (28)
V3=(Ce&?|V )RS (28)

" 15 also a flow formula.

It is casy to work inversely to find from what cnergy equation,
| and resistance law this can be deduced. The result is,

Resistance = @'P(V;')}|R (29)
V =i (og/®") RS’ (30)
Ky =¥ E1))
and the complete energy equation is
)l 2 a
S=HC#V,)’R*S3 |V +(V J4Cs) (V*/RY (32)
Cumparis,l_on f}f (30} with (28) gives .
@' =pVi/Co (33)

* which throws the curious resistance law back into a standard form,
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Resistance =abs. const. Pp (V ) ( i‘J'rR)I : (33q)
by using f; = V*/R, and V = 2V.

The boundary, and mtcrnal rates of working are now % and | §,
of the whole, against 2 and % of the rigid boundary case, or the cas (
represented by (26).

(c). Implication of the Two Flow Formulae. Fig. 4 reconciles
the two results. Above and through the Prandtl layer, shown toa
very exaggerated scale, must be another layer of sand-water mixture
in which the sand concentration 1s so great as to make the
behaviour much different from that of the inner fluid, If the
silt load is all of one grade it all occupies the dual layer, whose upper 3
portion we shall, for convenience, call the Lacey Laver. If the silt §
is, as usually in practice, of mixed grade the heavy grade occupies the |
dual layer, and the fine material is in suspension in the body of the *
fluid but not, in the problems we consider, in sufficient quantity to make
the behaviour appreciably different from that of pure water. The &
bottom of the Prandtl Layer is stationary. :

Exactly as in the rigid channel case the Prandtl layer is bounded |
by the motionless bed, and the stratum of mean velocity £V, and accounts
for ‘2 of the rate of working by gravity. In the inner fluid the remain- &
ing one third is accounted for; but between the Prandil Layer and the §
relatively pure inner fluid is now the Lacey Layer, bounded by the §
mean speeds 3V and 2V which abstracts 1/12 of the total energy @
leaving only } for the real inner fluid,

One of the two flow equations arises according as we start from §
the * Resistance Law" or, more cnrrectl:,r, as has been pointed oul 3
already, the ** Energy D:ss1pat10n Law" of the Prandtl ]i,yer or the &
Prandtl-Lacey Layer respectively.

(d) Rate of Working. Using (24), with ¢t replacing ¢l, and
multiplying by 3 we get :
Rate of working by Gravity per |h.= VLﬁg,ﬁ’g& (34

This shows that, for given physical conditions, a Regime §
Channel adjusts itself so that the rate of working by gravity per Ib. is the
same, mﬁﬂkﬂcr the d'tscﬁﬂrdf This law helps to explain the tortuosity
of rivers in low stage in alluvial plains.

(34) Can be thrown into the standard form nf * (turbulence
criterion) X (a velocity; X (a fac or)™.
Equation (25) adapted, gives
S=VV_ Al (Co) .. .. .. .. .. .. .. 039
Whence (27) gives

VoVl INRIIE s s 5 5 (36)
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" .nd (24') leads to a rate of v;mrkimng by gravity of

(VYR Ved. m/P'A/Cvevevaaee. .. (37)
It is not possible, without using the shape formula (12), to obtain
L similar form to (24'), in terms of V/, and direct physical constants
(unmixed with f1). The result from (34) 1s then
i (VE2IRV (PIR(1/¢CC®H  ...... (34").

5, (d) IPmndtls‘ V. appertains to the boundary, and the function
- (cl/R) or (¢ t/R) looks after the distribution of mixing velocity through-
out the fluid.

(¢) V. remains the most difficult concept to elucidate.

The definition of * equivalent protuberance”, can be written
(VR (Ve g Cuvaneniiiannenns (38)

' and seems to make V', a mixing velocity associated with the Lacey
" Layer in the same way that V is associated with the Prandtl Layer.

But whereas (35) shows that V,, increases with I and fi, V' 1s (v9)* and

" fixed. Yet (34") adds confirmation to the mixing velocity idea.

P

The definition of V/_ suggests that it isa measuie of the slip
velocity required to keep a particle of given size Just in the state of

incipient suspension requisite for its transport. » measures the lifting
force, and o the resisting force. It follows that Vr 1s always associated

with a constant C, or C' [equations (11) and (1) whiCh, althmﬁugh non-
dimensional, is a function of the difference in relative densities of silt
and water, so that when there is no silt ( 1. e. water has to lift water) the

effect of 7 | ceases,

i S B e

o s

. (34") suggests, then, that the silt layer adjusts itself so as to _let
a mixing velocity V, be impressed on the boundary of the inner fluid.

The boundary has then to adjust itself, according to the Shape Formula
(12') so that the average mixing velocity throughout the fluid may be
* adequate to dissipate energy at } the rate at which gravity works. In
. other words, instead of the mixing velocity varying with ¥ as in a nigid
. channel, so that the energy can be dissipated according to the energy
~ equation, the mixing velocity is limited by the Lacey Layer and the
shape  has to change, the ratio P/R increasing with V.

- (f) The suggestions of this paragraph (e) are admittedly con-
~ Jectural; but are given as the subjec: is very important for the next stage
of the Lacey Theory, viz., the study of the mechanism of silt transport.
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(@) By means of Hamilton's Principle, which leads to an Enernlls
Dissipation Equation of Turbulent Flow, the older empirical formus&
of Rough Flow and Prandtl’s equations of Rough and Smooth e
can be corrected and linked with the correct formula of Blasiys (&
Smooth Flow, and Lacey's correct formulae for Incoherent Boundarie,

P

() The general equation of flow is

V =abs. const. ({:)gﬁfﬁg
r

. s : Y i 7 i
where "T_1is relative thickness of the * brake” at the boundary, i, ¢, &
(i) Itis I/R where | is protuberance height when conditions B
are ' rough rigid”.

_ () It is 5/R where b1is boundary layer thickness when & is?.l.-
1. e. when conditions are " smooth rigid"; and then 3

5/R is « (v/VR)! o 1N}

i PR ! . L I - A ::"-
(rr_r} It 18 f{R _where t 1s  equivalent protuberance” when &
channel is formed in its own incoherent transported material, 4

- () All formulae for turbulent flow are derivable from the nﬂﬁ.'
form of Energy Equation.

(d) Prandtl's Mixing Velocity is a measure of boundary eddy
ve]omt}f. :

() Lacey’s Turbulence Criterion is common to all turhulent 8
flows, and is a measure of resistance to eddy motion per Ib. of fluid &

(f) Lacey channels are distinguished by a special Sﬂnd-h‘;;[d
layer above and through the Prandtl Layer. 4

(g) The perimetral velocity bears a fixed ratio to the mean
each sub-type of turbulent flow.

(k) The meaning of V. =(vg)* 1is not clear ; but it appears f;’
be a mixing velocity imposed by the Lacey Boundary Layer, #°° &
explicable in terms of the mechanism of silt transport. ;

(i) Internal and Boundary Rates of working are adjusted ;
fixed ratio for each sub-type of turbulent flow.
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APPENDIX.

Values of C iﬁ V —=CR?% SJI‘
(Using data of Barnes Hydraulic Flow Reviewed)

_ ey

Material | C Barnes Table
Rock Faced Masonry in cement .. II 89 | XV
|
| .
Clean Hard-brick well pointed conduits | 115 | XI
| :
Dressed P'»’Iasanr}r cement .e i | 123 ! XIII
Clean Neat Cement Pipes .. wu: | 158 | X
| .
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I. Applied Hydro and Aerodynamics by Prandtl and Tietjens,l
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DISCUSSION.

The Author in introducing his Paper, explained that, although his
results had been arrived at by applying somewhat advanced knowledge
and methods, it was possible to show that existing accepted flow formulae

pointed to the Universal Flow Formula V=abs. const.( Rlx)*/2RS,
where x 1s the protuberance height for a “ rough boundary”, laminar
film thickness for a ** smooth boundary™,and ** equivalent protuberance”
for an " incoherent boundary”. He explained, in terms of a diagram of
velocity distribution, the modern ideas on Relative Roughness, Laminar
Film Thickness, and the physical difference between Roughness
and Smoothness. Using Prandtl’'s relation that §/R was of the

order of (Reynold’s I\T;:urnber}-i the Universal Formula reduced to
V=abs. const.(v/V'R )*2/gRS, which is the Formula of Blasius for

smooth boundary using protuberance height ifnr x, a formula almost the
same as Mannming's resulted. Using Equivalent Protuberance, the
Lacey Flow Formula resulted.

He hoped that this simple dernunsizration of tht% truth of his results
would appeal to those who had not the nime to acquire the specialized
knowledge requisite for a detailed understanding of the Paper.

Mr. Thompson remarked that in presenting Papers to the
Congress the Authors of such Papers were evidently prompted to give to
the other members of the Congress the result of theirstudies in the direc-
tion personal to the Authors.

In order that the other members derived some benefit from the
communication, the matter should be presented to them inaforin which
was easily read and assimilated. Unless that property be satisfied the
value of the contribution might well be questioned.

The present Paper, besides giving us the names of various
prominent people dealing with the mathematical survey of the subject
of the Flow e¢f Water and listing various formulae, did not attempt
to supply the want which such a Paper should satisfy.

In eriticizing this method of presentation of the Paper it was neces-
sary to anticipate the probable obvious reply that the members of the
Congress should be so well informed as to follow with ease what was
written inthe Paper. To this the Speaker had tosay that in his opinion
the members of the Congress, especially the young members, were
thoroughly well equipped to deal with or to read modern scientific
iterature, but no one could be expected to specialize and we did look
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to the specialist in various branches to make easy for the rest of ug,.
presumbaly they understood thoroughly.

The Speaker did not wish the Author to think that these ren.
of his had anything personal in their applications. The Speakeri
considerable appreciation of the Author’s talents but he did mal.
plea for the betier presentation of what he wished to present to the o
members of the Congress who were not so very well informed on :.
mathematics of the Flew of Waler.

This Paper was not the first one which had been defectie § ihis s
the manner of presentation nor would it be the last unless those resp-§ 1o be
sible for editing the Papers exercised a stricter control over the man- § yccel
of presentation of Papers to the Congress. be n

['rom a perusal of the Paper it was gathered that the pom:
issue was whether the formula (1) was preferable to the formula (i
The difference between the two formulae amounted to a diffen:
of 1/12 in the valuec of the co-efficient of * R'.

_ After reading through the whole of the Paper, members st
did not know which of the two was the better formula,

Mr. Halcro Johnston said that the object of this Pap
namely to remodel the present flow formulae so that they would
dimensionally correct and would comply with theoretical requireme:

was excellent.

Most empirical formulae contained constants of which the dime &
sions  were often complicated with different numerical values i e’
system of units ; a troublesome calculation had to be made in chang:-
from one system to another, and .many different numbers had to
memorized ; these disadvantages were removed when such constants ¥
replaced by numericzal constanis of no dimensicns.

As to the Author’s conclusions, the Speaker had been unable® §
form an opinion as he had assumed a knowledge of the latest literat"” S8
on the subject, which he did not possess. The Paper, the Speaker thoue™ 38
would have been much more valuable if the Author had justified his /€
ments more fully and had given in tabular form, at the beginning. **’

definitions of the letters used in the formula.

The Author appeared to consider that indices should be in“?‘{ﬁ_
or simple fractions like %, wherever possible ; in equation (15): E]
instance, he selected 2 and 1 as indices of V and R without appﬂfF“ﬁ;
any experimental justification ; there appeared to be no theoretica J“EF
fication for this preference for whole numbers. That it was t Il,‘ :
tically unsound could readily be shown if an empirical formula of t
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form: y=Fkx"® was made to fit one consisting of two terms, such as
g=Ax+Bx®, having integer indices. Nor were whole-number indices
necessary from the point of view of dimensions; the nght hand
side of equation (15"), for instance, might be written, .

abs. const. PR(gR) 1" (I/R™* Vis,

This would be dimensionally correct whatever the value of n and prac-
tically equal to (15°) if n were approximately equal to 1.

Viscosity, the Author said, could notenter intc equation (15) :
this statement needed justification. If the co-efficient of viscosity were
to be reduced while the gradient S remained constant the water would
accelerate due to reduced resistance and with a perfect fluid there would
be no resistance.

The boundary resistance appeared rather as the cumulative effect
of viscous flow throughout the liquid; the roughness ofthe boundary
accentuated this effect by causing cross currents which resulted in
differences in velocity in a direction at right angles to that vector and the
greater these differences the greater the viscous resistance.

Equation (15) dealt with a cyvlindrical volume of water of unit
length filling the whole pipe ; if a cylinder of smaller diameter had been
considered as flowing through the surrounding cylindrical shell of water,
an equation similar to (15) would have been obtained butin this case the
resistance would clearly have appeared as due to viscosity. The case
treated by the Author could be considered as a limit of this general case
when the diameter of the cylinder appoached that of the pipe; the
difference between the two cases, therefore, appeared to be principally
one of degree.

For the same reascn it seemed incorrect to differentiate between
the rates of internal work and of boundary work as the Author had done
mn equation (20}.

The Speaker said he would try to support those statements by
working out the case from first principles, starting with the equation
of motion of a viscous fluid. Let us take for simplicity, he said, the case
of a horizontal pipe.

Let dr he a small element of volume,
vy 1ts velocity wector,
o its pﬂsitinn vector,
p the pressure at the point,

F e force vector per unit mass due to gravity.
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f, the acceleration vector of the element.

LR pressure gradient vector,

Sx”

i1 d-

r .
v the average velocity vector, equal to =,

& o . k
=P the average value of P_ throughout the - cylinder, |

ox Sx’ '
{the scalar value of its horizontal component being PaS.)

JIfd7=A, the cross-sectional area of the pipe.

The equation of motion of unit volume of the element could be

written =P o g (R R (A)
9x"

(see McConnell's Applications of the Absolute Differential Caleulus,

page 28!, equation (35)).

This was a covariant equation,  Taking its scalar product with
VT, we would get the rate-of-work equation :

"f}vf’— 1g® u G =(F — f.r}z_ﬂ’ ................. S renkiD)
._r.x’ 1

Multiply by dv and integrate throughout a cylinder of unit ]engti‘l
The nghthand side of (B) equalled zero due to the following equations:

PF?‘IJ‘J“;&T:}QFM»‘TA=O, .Since F,and v were at right

angles. )
:Pj“fj‘frﬂ*'d?-——ﬂ, or was negligible, since the total accelera:
tion was nil. :

Only two terms were left in the rate-of-work equation ;

[ tiemef [ bt

The left term was the rate of work due to the pressure gradie™
and appeared to equal P2SV A asin equation (19) ; the right term was'thf
rate of work due to viscosity ; this clearly depended on w, the co-efficie?
of viscosity. Also since both o7, the veloaity, and o, t, the rate ©
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change of velocity gradient, would be affected by the roughness of the
pipe, this term must also include the Author’s index of roughness.

If, on the other hand, the equation of motion, (A), was multiplied
by d7 only and integrated throughout the cylinder, we obtained the
covariant vector equation :

EEA_F_”Igﬂu,ﬁ,cszaA.... ............. . D)

3xr
Since F,was vertical it did not enter into the horizontal component
which was, _ P

PsSA=px (horizontal component of [[[g I?,,.:ﬂd'f) P ..

This was the Author's equation (15) and it also clearly showed that
the resistance was the result of viscosity. Here also the value of v,

would be determined by the roughness of the pipe.

Dr. N.K. Bose also spoke but regretted he was unable to
remember what he said. (The following is taken from the Editor’s rough
notes and may not be quite correctin detail). Dr. Bose described an
interesting talk he had with Prof. Prandtl (the world-renowned engineer)
many years ago, i.¢., before Messrs. Lacey and Blench had published their
researches, and Prof. Prandtl had assured him that nothing less than an
exhaustive programme of research, divorced from all existing hypotheses
and data would allow the scientist to enter the unknown wc-rldp of tur-
bulence, in connection with the transportation of silt. Dr. Bose was still
of the opinion that Mr. Blench’s work would lead nowhere. He also
mentioned that it would be pertinent to ask why Mr. Lacey’s name had
been chosen for such an rmportant characteristic of turbulence as Mr.

Blench's *“ Lacey Layer".

Mr. R. K. Khanna remarked that Mr. Blench, while retaining
that time-honoured privilege of trying to bluff himself and others that
he was presenting a theory of flow of water, had dispensed with the
necessity of stating the “ why' and * wherefore'.

In the Author's own words, the object of his Paper was to find,
by using Hamilton’s Principle, the Energy Relations behind authori-
taive flow formulae, and thereby to establish a new flow formula for
rough conditions of rigid channelsand pipes. According to the Author,
a further meaning was given to certain quantities whose exact nature
was not known, Further, to prevent the analysis seeming indirect and
volved, it was advisable, the Author said, to show first how, by using
clues from its development and results, existing information could be
corrected and correlated.
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After the first mcntton of Hamilton's Principle in the apen:ng
paragraph of the Paper, and later on a reference to it in passing, My,
Hamilton was quite lﬂst to everybody. Indeed, nothing was said i
the Paper about the ' Energy Theory of Turbulent Flow of qumds“
itself, except in the title of the Paper.  After stating the object of the Pape
W hrcl‘l was indeed laudab]c, the Author announced to the dazzled and
bewildered members his own formula for rough flow as being

V= Constant RESE-

e

After this sudden and unexpected appearance of the Author's
formula, without a word of explanation as to how 1t was derived, there
was probably no direct mention of the new energy theory of the Author
in the remaining eleven pages of the Paper. The conclusions of the
Author were detailed on the last page of the Paper.

- e a O O

_ For the ordinary reader, there was nothing but turbulence and
inzoherence to be found in the Paper!

Mr. G. R. Sawhmney said that this Paper would have brought
forth still a more interesting discussion, had at least the living scientists
whose works had been made use of by the Author, to suit his own con-
clusions, had a chance of reading this Paper and offering their eriticisms.
This not being the case, the Author wasluckier than the proverbial dector
because, in this case not only the dead could not speak but even the
living, who were directly concerned, could not do so on the platform.

He thought such Papers were getting too advanced, both in the
use of integral calculus and manipulation of indices, and also ntro-
duction of unknown cc-efficients ; and the resulting empirical form=lae,
rather than suggesting more common-sense methods of translating
Nature and its laws and thus helping an average engineer to benefi
by reading them and practising on them.

He would suggest that the word ‘‘suitable’ would be more
fitting than ‘adjustable’ for qualifying * R’ in formula (9).

The Lacey formula had been accepted but it was in his opinion
no nearer the truth than the conclusion arrived at by other engineers
and the designs made quite successfully by following them.

CORRESPONDENCE
Mr. A. R. Thomas communicated that he thought that :—

(1). The two impressions formed on a study of this interesting
Paper were first the wealth of ideas and originality of treatment ap
second by the freedom with which quite important assumptions wer
made and gaps left in the argument, with scarcely any explanatio™
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' |n consequence of the latter 1t was difficult to say anything which was not

merely a series of questions regarding the derivation of expressions and
the justification for certain assumptions,

2. It was suggested that conventional symbols be used and an
cxplanatory key provided.

3. On page 74 the Author mentioned the existence of a
boundary layer, and stated that its relative thickness & R was of the order

of V1IN where N was the Reynold's number. This evaluation of the
thickness was made use of later in the Paper. The boundary layer to
which the Author referred was a layer along the boundary wherein the
flow was laminar and viscosity had appreciable influence. It was
unfortunate that this layer was referred to by many writers as the
* boundary layer’” as this term was in accepted terminology applied to
the layer, developing from the leading edge of a solid body, within
which due to viscosity the boundary had appreciable influence. The
low 1n the layer might be laminar or turbulent. In the case of a channel
the boundary layer would increase in thickness from the upstream end
until it enveloped the whole of the fluud. The layer to which the
Author referred could more appropriately be termed the © laminar
layer””, as it was a layer adjacent toa solid boundary within which the
flow was laminar, the flow outside 1t being turbulent.

4. Now the thickness of a boundary layer was of the order of
‘-."xi,-"f"-f[:!:‘}uthor‘s bib. 1, page66) where N the Reynolds Number= "] /v
not V' Rfv, L being the distance from the lcading edge. An expression
for the thickness of a laminar layer in a smooth pipe was given (bib. I,
page 79) as &/radius=68"4/N7/8, where IV this time was, Vr 1", r being the
pipe radius, based on the Blasius’s equation for resistance in simooth pipes,

. . P .
On what grounds did the Author arrive at V' 1/N for the laminar layer 2

5. It was of interest to examine the difference in boundary
conditions between smooth and rough rigid boundaries. In each case a
shear stress was to be transmitted from the boundary to the main body
of the fluid in turbulent flow. Where the boundary was smooth tur-
bulence could exist adjacent to it. The stress was therefore transmitted
to the turbulent region through a laminar layer, i.e., directly by its
viscosity.  Viscosity therefore entered the expression for total resistance,
which was proportional to the velocity raised toa power less than2.
Where the boundary was rough the flow around the protuberances
forming the roughness was turbulent and the shear stress was transmitted

¥ the reaction of normal pressure on them, and the change of mementum
was transmitted into the fluid by turbulent mixing. In this case visco-
sity did not enter the expression for resistance, which was proportional
to the square of the velocity, and there was no laminar layer. The

quantity V*=-1’;T_f;r which had the dimensions of a velocity, was used for
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the comparison of velocities—to reduce velo ities to a common nep,
dimensional basis. : !

6. The Blasius equation quoted by the Author for smoot}
pipes (3) had been shown to hold in the case of pipes only below,
Reynolds Number of 10°. For higher values of N an’ expression
derived by Nikuradse which may be put into the form

y— 3bs: constant _ me
pf

where p=density of the water and f=0°0032+0"221 N¥**" a5,
better fit to the data (Rouse: Mechanics of Fluid Turbulence, Proc,
Am. Soc. C. E., 1936).

7. When the Author on page 75 stated that one of the * more
obvious defects” of the Prandtl-Karman-Nikuradse theory was the
existence of a cusp in the velocity distribution curve, did he refer to the
1/7th root distribution law which was derived from the Blasius resis-
tance equation (bib. |, page 70)? If so, it seemed rather “severe on
Prandt] to say that his theory of resistance was defective because he
derived quite independently of this a certain velocity distribution law
from an equation which the Author apparently accepted as correct,
particularly when it was not intended to apply to the whole cross section,
as the Author must have applied it in finding the cusp at the centre.

8. Figure 2, comparing the Author’s co-efficient with Prandt'’s
for rough boundaries, was stated to show that there was practically no
difference asa fitto data. It would be of value in judging this point if the
Author would plot the two formulae against the data.

9. On page 77 it was stated that fO(mVgd.s/(V, 17

It would assist the reader if the derivation of this expression, stated on page
83 to be obtained by dimensional analysis from f,0{d'"2, were given
more detail. What was "2 Ty

10. On the same page VL=(5’§1I3) was presented as a new

concept arising from the Lacey theory. Inthe discussion on the Author’s
Paper of 1937 the writer suggested that in the equations of channelt
flowing in noncoherent bed material g would appear only in combination
with Sor(o— P), where o= density of bed material. From his remark
on page 85 it would appear that the Author, if he agreed, would
associate (¢ —f)with g in this expression.

11. On page 78 under the heading of “Hamilton’s Principle s 8
did not refer to the thickness of the boundary layer but had its usual
meaning in Calculus, i.e., ** a small increment in.”




Energy Theory of Turbulent Flow of Liquids 87:

12. It was not clear why the principle of least squares showed that
the kinetic energy of the relative motion must in any case be a minimum,
and the Author was only justified in assuming that the kinetic encray
. of the mean motion must be a minimum if he could show that the two
kinetic energies were a minimum under the same conditions. The root-
mean-square velocity might not in *“in practical cases ” differ appreci-
ably from the mean velocity, but as the Author’s object was to show why
what happened in practical cases did happen, it was suggested that
account should be taken of the difference. In small channels the
difference might be appreciable.

13. " For Lacey Regime Channels, dV/dR=0=dV[dS.”. Was
not shape considered also, viz., dV/d(P/R)=0?

[4. WhentheconditiondV//dS= 0 was applied to equation (20) the
second energy term was omitted. The justification for this was not
clear in view of the presence of V'™ in the term. If both sides of (20)
were multiplied by V/S and differentiated with respect to S a value of
dV'[dS was obtained which was not independent of the second term.

15. The Author's remarks on rigid rough channels appeared to
be confined to channels of circular cross section. With cross-sections
of other shapes although (R/I) might be constant the velocity gradient
and the effective (R/l) were not constant over the wetted perimeter.

16. It was not clear how equations (9°) and (26) were derived from

(9), nor (28) and (11°) from (11).

The Author’s conception of twolayers at the boundary, termed by
him the Prandtl and Lacey layers, was of much interest. The former
was presumably similar to the laminar layer in a channel with smooth
boundary. The limit of a laminar layer was the plane where sufficient tur-
bulence existed to render the effect of viscosity negligible—an arbitrary
limit. In the Author's conception what defined the limits of the Lacey
layer and was the flow therein laminar or turbulent? If the bed material
were wholly confined below the turbulent layer no silt would be carried
Into suspension, except perhaps a small quantity by saltation, The
writer visualized the bed as comprising a series of waves of bed material,
the flow being laminar on the upstream of each wave carrying material
with it to the crest from where the fine particles were carried into the
turbulent region above while the coarse particles settled into the trough.
Particles were continuously settling from above on to the upstream
slopes, with the result that the waves might move downstream or up-
stream according as the rate of settlement was less or greater than the
rate of rising into suspension. Did the Author visualize the bed as a
plane surface as would appear from Figure 4, and if so how did he
¢xplain the carrying of particles into suspension ?
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"B msessensecch the Paper was thc application of Hamdtnng 11ﬂﬂ‘
Principle as an underlying law governing the tendencies of channels o by
and plpcs n adjushng their dimensions. This a pﬁared to be sound
and opened a line of reasoning which should leatf to considerable ad.jtegral
vances. If the Author would rewrite or augment his Paper, explain. stribul
ing intermediate steps and pointing out assumptions made, stating their fn but
justification, it should be one of great value, and it was hoped that he ke m
would continue his research in the subject.

The Author in replying to the discussions said that he apprec. It
ated Mr. Thompson's point of view but regretted it was ummsm}:]e to |i,d d
simplify a specialized subject to such an extent that it would be immed:-

ately understood by a general audience. He had tried to make amends 5&{'?;,;
in his introduction, by giving a simple bibliography from which 1'nin
specialized knowledge could be obtained easily. The Paper itself ?:m
contained only simple mathematics and ideas and a study of the |
Blhlmgrdphy would remove most of the apparent difficulties with the
possible exception of Hamilton’s Principle, which the average engineer

might find difficult to derive ab iitio. =

The difference between Manning's and the Author’s formulae was ent
greater than Mr. Thompson thought. If they agreed at R=1"0 foot, mel

they would disagree by about 20 per cent. at R=9"0 feet, so Manning's Eﬂlﬁ

lu’f

formula would not be suitable for prediction from small scale experi-
ments of the behaviour of even moderate-sized tunnels. The practical
value of the new formula was, however. incidental : 1ts real wvalue lay
in the fact that it was dynamically sound, and its derivation led to new
physical ideas and the unification of what was previously disjointed.
Since writing the Paper the Author had derived a velocity distribution
consistent with the Flow Formula, using von Karman methods, and
considered that he had now obtained a complete theory of turbulence of
original physical interest.

He was most interested to see Mr. Halcro Johnston employing the
beautiful notation of the Tensor Calculus, although not agreeing in ful

with his interpretation of equation (B). [ff F,v"dr was not zero, for

F,and v” were not at right angles. The integral gave the rate of

working by gravity per lb. The integral J‘J‘J‘;-E;u"df gave the rate
3

of working per lb. by the pressure-gradient. In an open channel the
pressure-gradient was nil. In a horizontal pipe the rate of gravity work
was nil, for then gravity was reaiiy at right angles to flow. The Author
avmdcd using two terms by using S for non-dimensional pressure
gradient, or for channel slope. The use of non-dimensional terms ha
greatly simplified hydraulics, just as the use of tensor notation ha
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simplified physics in general. The rate of working of internal forces was
] . :
given by ,u_i',fjg's v, at.ur-d'r. The trouble, the Author said, with this

integral was that it could not be evaluated without knowing velocity
distribution in turbulence, which was precisely what we should like to
find but could not. The standard use of Green’s Theorem would

make matters no simpler, for it would give

filg® #U,-?r.:vrrf“r=}'.rvf'-ﬂr,sdg_'-r'r-rf$ gﬁtft}#',-ﬂﬂh'

It was just this inability to evaluate the viscous work integral that
had driven modern investigators, such as von Karman, to approach the
subject by analysing authoritative experimental data in the light of
dimensional analysis, and sound. general dynamics, in the hopes of ob-
taining functions with an obviously definite meaning (e.g., Reynold’s

Number, or Vg, or Lacey’s F3/R).

These would allow systematization of previously disjointed data,
and act as pointers to the nature of the mechanism that gave rize to them.
The tremendous advance given by these new methods was most appar-
ent in von Karman's work, set out simply and appreciatively in Bakh-
meteff's * The Mechanics of Turbulent Flow ™ (Princeton University
Press, 1936). The Author had used the new method of attack as
follows : (i) replaced the viscous work integral by the two parts, one
for the Laminar Film, and another for the Inner Fluid; (if) used the
mimimal condition behind Hamilton’s Principle, as applicable to the
nature of uniform turbulent flow in a pipe or channel. The particu-
lafization inherent in (i7) was still not very detailed : but it was sufficient
to obtain the ratio between the two parts of the wviscous work integral
to derive a boundary velocity law, indicate the general resistance law
for all cases, give a definite meaning to Lacey’s V2R, and give valuable
hints on other matters. The results were of considerable scientific and
practical value ; but the full expression of the viscous work integral in
such a way as to give the rate of working at any time for any part of the
fluid would never be possible by any method, for detailed turbulence was
erratic, although the bulk results were systematic.

The establishment of a ratio between the parts of the wiscous
work integral explained why viscosity could be dispensed with. Physi-
cally the reason was that a definite proportion of the gravity rate of work
was transferred into vortex form. This proportion, given sufficient
knowledge, should be expressible in terms of the viscosity that damped
out the energy ; but 1t was practicable to use an expression of the cause
of the vorticity which arose from impact against protuberances, and
was therefore expressible without viscosity at all. An analogue was
that of an aeroplane propeller. The rate of working could be expressed
in terms of the engine driving it, or the rate of dissipation of energy in
the air stream produced.
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The Author regretted he had not given full reasons for insistence
on simple indices, and Mr. Johnston was quite correct in stating that a
complicated index might result from the attempt to replace a simple
algebraic function by a power of one variable. [t was, however, estab-
lished by all authoritative experiments that ** rough boundary " condi-
tion was a definite physical condition in which Secl?, The range of
S was too great for this to be disputed. Figure I (a) would support
this, for a logarithmic scale had to be used to make the diagram manage-
able. Transition data, from smooth to rough boundary conditions,
both of which were stable states with simple indices, did actually have
complicated indices because their ** law ™ was a combination of the
simple indicial laws of the extreme stable states.

Replying to Dr. Bose, the Author condemned his negative attitude,
and referred him to para. 16 of Bakhemteff's * Mechanics of Turbulent
Flow ™, to impress on him that von Karman’s theory was not accepted
as final even by its Author. He said that a writer of Bakhemteff's
ability could discuss the defects and, at the same time, appreciate the
tremendous advance obtainable from a new theory based on sound
physical ideas, giving such an excellent approximation to truth, and
systemalization where none existed before. He assured Dr. Bose that
he had not misquoted the Lacey theory in any way.

Messrs. Khanna and Sawhney were thanked for their remarks.

The Author, from informal discussions with certain officers, felt
that he had caused some confusion by changing nomenclature. He had
used ** Mixing Velocity " instead of ** Shear Stress Velocity ", and
“ Boundary Layer' instead of ' Laminar Film"”. The order of
thickness of the Laminar Film in this Paper was derived by the identical
method used by Prandtl to obtain the order of thickness of the Boundary

Layer for a plate.

Reply to Correspondence by Mr. A. R. Thomas. The Author
thanked Mr. Thomas for his appreciation, and for the very detailed and
useful points raised. They were best replied to in paragraphs, numbered
to suit the queries.

1. Would be attended to in further detailed publications.

2. The symbols followed Prandtl’s reasonably closely.

3. For "boundary layer” read *“‘laminar film.”" The terms
appeared to have acquired specialized meanings, and the confusion
caused by mixing them was regretted. Prandtl’s argument in para. 39
of Bib. | applied exactly to the Laminar Film, although it was worke
out with special reference to the Boundary Layer,
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4. The method of Bib. I, page 79 was highly artificial. § was
given a conventional definition, the seventh rootlaw was now out-of-date
(having been superseded by von Kariman’s logarithmic one and being
variable with N), and the assumption u,,,,=1°235, was also inaccu-
rate. Bib, 1 gave several formal definitions of § and each would lead
to a different formula. The method of para. 39 was much the best as
it consisted of omitting second order terms in the equation of Navier-
Stokes and was free from any conventionality.

5. Agreed.

6. It was unfortunate that some investigators had tried to *' im-
prove " the equation of Blasius to cover physical conditions where it was
inapplicable. When N had increased sufficienily to reduce § to about
protuberance height the boundary conditions were no lenger smooth.
The flow equation could not then be simply expressed, as 1t was a com-
bination of the equation for purely smooth and purely rough boundaries,
a different combination for every wvalue of N. Increase of N would
eventually result in purely rough boundary conditions and the fow
formula would then be definite once more.

In short, equation (7') was for rough boundary, equation (8) was for

smooth ; the former gave Socl? and the latter gave Secpl'™ - the
formulae were exact tor the conditions they represented, and no formula
devised to smooth the one into the other, viz., the transition, could
possibly be exact for either. Rouse’s formula was based on a misunder-
standing of the physics of the case.

7. The reference was to von Karman’'s logarithmic curve, not
mentioned in Bib, 1, but in Bakhmeteff's ** Mechanics of Turbulent
Flow ", referred to hereafter as Bib 3. The 1/7th root law was now
obsolete,

8. The data were not available at the time of writing. If Fig. 3 he
compared with Bib. 3, Fig. 60 where the data was plotted it would he
seen that R/l=7"5 and 126 were for transition and smooth conditions.
What was left of Fig. 3 after excluding these was pactically straight, and
cut the axis of Rf{{=0 at a distance of 0°6 from the origin. The zero
error was adjustable by changing the method of measuring I Thus
if mean height was half total height and we measured mean height
mstead of total height the zero error was removed, as 06 was almost
exactly 2, log 2. The labour of plotting data was therefore unnecessary.,
The formulac were indistinguishable over the range of Nikuradse's
experiments.

9. May be done directly, without m and F’, by standard methods,
or from the consideration that the dimensions of Vgd were those of
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=

T\-’El{)Clt}" w]uch were came]lcd by thuse of V , leaving g which was a

acceleration like f. Then multiply by m/f” which was non-dimensional]
Physical considerations showed that m must occur, and £ was required
to balance 1t. (See also eqn. (8) of Lacey’s replies to [.C.E. Paper 4893),
£ was a density, but must be associated with both silt and water iny
way the Author could not define exactly at present.

10. This expressed the Author’s opinion exactly, and he owed i
largely to points raised by Mr. Themas on a previous paper. ¢ and f
were now, however, relative densities.

11. Noted: but the symbol was common to hydraulics and
calculus.

1 he difference mentioned was slight, but led to considerable
mathematical difficulties. The Author would be interested in data of
small channels showing a large difference. Mr. Halero Johnston had
shown the Aﬂthur that the principle of least squares was not required.
In fact the K. E. of the fluctuating motion being, on an average, a fixed
fraction of that uf the mean motion, for any one case, the vanishing of the
differential coefhicient for the whole implied the vanishing for the parts.

13. Yes, the conditian dV/d (f"‘;"R}_:O must have an application;
but not to the Fnergy Equation, as P cancelled out. An equation about
the silt-water film was wanted which, the Author thought, treated by

the condition mentioned would lead to P==2"67Q%

14. The differential coefficient V™ contained dV/dS as a factor,
i.e., zero as a factor. Multiplication by V/S complicated the work
but must give the same answer.

5. R was an omnibus term which ought to get over the diff-
culty except for abnormal shapes. This view found support in Bib. |
page 43.

16. Taking (28) as a simple example and writing
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dimensionally this gave
DT3=(LT2%LTY)Le,
Le., a+2b=l,
-2a+b=3,
Whence a=% and b=~—1,
So that Floc(g®#u'/®) RS :
oc(g2/ VRS, ....... g. e. d.

The term C was introduced for physical reasons,
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The other formulae were equally simple.

17.  The Authorin no way disagreed with Mr. Thomas’s concep-
tion ; but would prefer not to dogmatize on what wes still parily specula-
tive. The Author had only established that the nature of the boundarv
could be represented by a lincar dimension in the universal flow formula,
just as for rough rigid and smooth rigid boundaries. Even in a rough
houndary the Iincar dimension must contain a shape factor and a spacing
factor; but, in practice, we were not interested in these matters. We
merely recorded that boundaries of certain general natures gave certain
values of C in V=CR¥**SV3( being=abs. constant [['**). Theore-
tically, the nature of /, or ¢, was of great interest ; and experiments on
I were being made by various workers. Mir. Thomas’s interest in the
nature of ¢ might be expected to lead to an eguation from which
P=2"670'"2 could be derived by using dV/dP=0. The Author was
in full general agreement with Mr. Thomas’s ideas on silt-movement and
emphasized that ¢, like [, or d, or f, was an omnibus term defining
boundary nature, but not vet correlated with the more detailea
mechanism behind it.

18. A Paper developed from the viewpoint of the non-irrigation
engineer had already been prepared, and accepted by the .C.E, It
had succeeded in working out a velocity distributien law in terms of
a vortex model, and the result was in complete accordance with the form
of the Universal Flow Formulae,



